Mondrian or this is not a Toolkit

Martin Theus

martin@theusRus.de

Differences at Several Levels

Motivation

The motivation for writing Mondrian was (in the end) to build a tool that can be used by anyone who needs graphical methods for EDA for (almost) arbitrary datasets, regardless of his/her computing skills.

Concept

Above motivation calls for a more or less closed and complete application with no configuration efforts and little learning efforts.

• Technical

The software design for a closed application does not necessarily need "orthogonal" components that can be combined to build new visualizations.

All Kinds of Data

Structure Data vs. Unstructured Data

Classical datasets in statistics are simple rectangular data matrices with rows corresponding to observations (cases) and columns are the different variables (attributes) measured per observation.

Data on different Scales

Above all, the scale of a variable is important for its potential role in an analysis. Scales are:

- nominal (alpha-numeric or numeric)
- ordinal (alpha-numeric or numeric)
- continuous

Dark Ages of Statistical Data Visualization

For a long time, data visualization in statistics did only handle numerical data (as classical statistics does) with all the problems.

Mondrian

Data Handling in Mondrian

- Mondrian assumes that data sits either in datafiles or JDBC accessible databases and follows the strict rectangular layout. (datafiles may optionally point to a polygon description file)
- The dataset class handles all data requests (selection, color, ...)
- Internally all columns of the data table are stored as variables
- The table class manages all (multivariate) categorical data

Graph Drawing Objects

- Of central importance in Mondrian are the mechanisms for selecting and highlighting data on case level
- The standard plot-canvas supports all that is needed for selections
- If coordinate systems are used, standard zooming can be used
- Each plot must implement the necessary methods to maintain the correct representation of a selection, color etc.

Plot Primitives

• Points

Points, like in scatterplots, are **NO** objects and have a 1:1 correspondence to some columns of a single row in the data matrix.

• Polylines

Analogous to points, polylines are the multivariate incarnation of a point, i.e., they correspond 1:1 to a row in the data matrix.

Rectangles

Rectangles are objects that correspond to either a single row of a table or a group of rows of a table and gather many cases.

• Polygones

Polygones, as in maps, are a generalization of rectangles and link to a group of cases in the dataset, less strict as a table.

Decomposing a Graphic

- In an object-oriented programming environment/language, an effective definition of the graphical objects is key.
- Typical Objects
 - plot primitives
 - points
 - lines
 - boxes
 - axes
 - plot specifics
- Example: Histogram
 - primitives: boxes
 - axes
 - x: range
 - y: count or probability
 - plot specifics
 - origin and width control

Mondrian

Example of Plot Layout

- 4 layers can be defined to group the different plot components
 - Interaction layer
 - Selection layer
 - Object layer
 - Background layer
- The layers are defined according to their update frequencies from least frequent update to most frequent update, i.e.

interaction \succ selection/highlighting \succ objects \succ axes (background)

• Very important to speed up drawing times!

Interactions: Events

- Apart from JAVA's standard events, Mondrian implements two application specific events:
 - Selection Event
 - DataChanged Event
- Event distribution

(e.g. plot 2 changes the selection state)

VisMaster Workshop

Interactions: Conventions

- There is a tight and consistent mapping of interactions
 - Selections
 - click and drag > create a selection rectangle / brush
 - click on selection rectangle handle \succ resize this selection
 - popup-trigger on selection rectangles > alter this selection

- Queries

- <alt>-mouse over coordinate system >> orientation query
- <control>-mouse over objects >> query
- <shift>-<control>-mouse over objects >> extended query

- Alterations

- meta-click and drag > zoom in/out (middle click on Windows)
- popup-trigger on background >> get/change plot options
- alt-click and drag \succ reorder objects
- page-up /-down >> cycle through views
- arrows up/down and left/right >> increase/decrease plot parameters

Animation free Zone

- In InfoVis, animation is almost a must; in statistics, animation will significantly reduce your credibility.
- Animations usually show a transition from one state to another
 - different layouts (mainly for graphs)
 - different scales (zoom operations; maps etc.)
 - different plot parameters (e.g., smoothing parameters)
- Animations help to preserve the context, which might be lost if the change happen too abruptly.
- Transitions should be avoided if the intermediate states are not meaningful.
- The only obligatory animation in statistical graphics can be found in 3-d rotating plots

Mondrian

What does it take to build a new Plot?

- Data handling: √
- Define new plot object
 - Derive new class from MPanel
 - [Aggregate data, and/or calculate statistics]
 - Define the paint() method using
 - coordinate system
 - plot primitives
 - Define selection methods
 - [Define custom interactions]
- Housekeeping
 - Add plot to the plot menu
 - Define variable constraints for the plot
- All coding has to be done in JAVA

www.theusRus.de

Mondrian

Size Matters!

- Unlike classical statistical graphics tools, Mondrian takes care of large datasets, i.e., dataset with > 1.000.000 observations
- There are some standard techniques to cope with massive data
 - alpha-blending to cure overplotting
 - different forms of zooming (names may vary)
 - standard
 - logical (change representation of objects)
 - censored zooming (only focus on the fringes)
 - quantum zooming (only zoom in on the highlights)
 - • • •
 - automatic sorting options
 - automatic permutations
- Above all, make sure the plot is still working with large amounts of data; regarding rendering speed AND interpretability.

www.theusRus.de

Mondrian

Summary

- The main difference between Mondrian and (other) InfoVis toolkits is probably the difference between building a visualization tool and implementing domain specific concepts and strategies.
- Structured data (as in graphs) directly constitutes the features within a dataset. If we assume to have randomness following a specific distribution, we might observe the features in the data only indirectly.
- Having "only" multivariate data of just a few structural different types of distributions, there is no need to create new graphical representations "by the minute".
- Nevertheless, to create prototypes of a new statistical graph, it probably needs more flexibility than a "standard" toolkit offers.