Plot and Look!

Trust your Data more than your Models

martin@theusRus.de

www.theusRus.de

Telefónica O₂ Germany

Augsburg University

Outline

Martin Theus

- Why use Graphics for Data Analysis?
- Foundations of Interactive Statistical Graphics
- Escaping Flatland ... ways to cope with multidimensionality
- Statistification of Graphics
- The Mondrian graphical data analysis tool
- Demo

Martin Theus

www.theusRus.de

Why use Graphics (anyway) ?

- Classical >> Presentation
 The most common use of graphics is clearly in presenting
 qualitative or quantitative results to a broad audience
- Statistical > Diagnostics
 In statistics, graphics are often used to check the quality and
 properties of statistical procedures or models
- Analytical >> Exploration
- During the exploration process of an analysis, graphics aid to generate insights and deduce properties and relationships
- Essential > Data Cleaning
 Whenever we get to work on raw (dirty) data, it is essential to find, understand and clean up artifacts and errors

Data Analysis

Martin Theus

- From en.wikipedia.org
 - "Data analysis is a process of gathering, modeling, and transforming data with the goal of highlighting useful information, suggesting conclusions, and supporting decision making. ..."
 - "... Data analysis has multiple facets and approaches, encompassing diverse techniques under a variety of names, in different business, science, and social science domains."

Points of View

- Math - Application of stochastic Models
- Computer KDD Science - InfoVis
- Business Business Intelligence
 - Decision Support

Prerequisites for Graphical Data Analysis

- The general principle which we use in statistics (and thus in data analysis in general) is to compare groups, i.e., look at conditional distributions
- In traditional statistics, we assume underlying distributions and given these distributional assumptions, we can than test hypotheses and estimate parameters
- Graphical methods often show that these distributional assumptions may be far off from being fulfilled
- Thus for graphical data analysis we (at least) need
 - Tools which allow **selecting** subsets which might be interesting
 - Methods which can highlight a subset in specific plots
 - Means to **query** exact information from graphical / statistical elements
 - Mechanism to modify **plot parameters** on the fly

Martin Theus

Foundations of Graphical Data Analysis: Selections

6

- Selections as such are not really interesting but they are the necessary step to specify subsets of interest
- In an exploratory set-up we often want to look at the properties of specific subgroups, like

"Find all customers, who paid less than 15% tip, at night, except on weekdays!"

- The flexibility with which we can select data directly determines the how successful we may solve the exploratory analysis.
- Obviously we need different selection tools and selection modes

Foundations of Graphical Data Analysis: Selections

- Tools to select data:
 - Pointer
 - ... is used to select single points.
 - Drag-Box
 - ... selects rectangular regions in a graphics window.
 - Brush
 - ... allows a dynamic change (movement) of the selected region – usually a rectangle.
 - Slicer
 - ... selects intervals along an axis dynamically.
 - Lasso
 - ... allows the most flexible definition of the selection area.
 - Startpoint and endpoint are always connected.

- Modes to select data:
 - Simple / Standard / Default
 ... only points in the selected region are selected.
 - Intersection / AND / \cap
 - ... only points that already were selected and are within the new selection stay selected.
 - Union / OR / \cup
 - ... the newly selected points are added to the current selection.
 - Toggle / XOR / \oplus
 - ... selected points are deselected, unselected are selected.
 - Negation / NOT / ¬
 - ... points in the selection region are taken out of the current selection set.

Foundations of Graphical Data Analysis: Highlighting

- Once a selection is defined, it needs to be propagated to all other plots
- All plots need to know how to highlight a subgroup
- Highlighting may be
 - transient (only changes when a new selection is performed)
 - **persistent** (a new state explicitly must be assigned to the involved cases)
- A clear rule how highlighting is performed is desirable, but exceptions have proven to be very powerful

www.theusRus.de

Foundations of Graphical Data Analysis: Queries

- Graphics are good at communicating qualitative information but fail to give exact quantities ⇒ need queries to get exact values
- Gridlines can help (only) for the variables within the plot
- Interactive graphics often display very little scale information (cf. Tufte's "data-ink-ratio")

Foundations of Graphical Data Analysis: Queries

- The level of detail of a query should have optional granularities:
 - orientation, "what are the coordinates at the mouse pointer" (interactive grid)
 - "what are the coordinates of a particular value" - standard,
 - "what are the values for an object beyond the variables in the plot" - extended,
- **Example:** scatterplot

orientation

Escaping Flatland I

Selection >> Linking >> Highlighting
 Example:

Martin Theus

www.theusRus.de

Escaping Flatland II

- The two essential multivariate plots are
 - parallel coordinate plots (for continuous data)
 - mosaic plots (for categorical data)
- Both of these plots are not very powerful for exploratory work as long as they are not implemented interactively.

• Essential interactive features are

- Parallel coordinates
 - rearrangement of axes (manual, automatic permutations)
 - scaling of axes (common, individual, inversion)
 - alignment of axes (mean, median, constants)
 - sorting (min, max, mean, median, range, std.dev.)
- Mosaic plots
 - include and exclude variables
 - permute variable order
 - (censored) zooming
- Linking with these plots increases dimensionality even more

Foundations of Graphical Data Analysis: Parameters

- Looking at the graphics functions in systems like R, SPSS or SAS, we find a large number of options to set
- Many of these options only apply to the artistic quality of the plots, i.e., fonts, colors, patterns, etc.
- For an exploratory analysis, we need to modify those plot parameters, which relate to statistical aspects of the graph
- Example: Barchart
 - Two parameters:
 - anchor point
 - bin width / no. of bins

Statistification of Graphics

• Example: Density Estimation

Statistification of Graphics

• Example: Scatterplot Smoothers

Outlook: Graphical Inference

• Basic Idea:

Martin Theus

"Look the sampled data of the model like my raw data?"

- Once we "know" how our raw data "looks like", we can compare it to the data we sample from a chosen model
- Example: simple linear model for **Tip** ~ **Billsize**

About Mondrian

Martin Theus

- Mondrian is a general purpose graphical data analysis tool
- It is based on the experiences and tries to expand the concepts and ideas of
 - DataDesk (Paul F. Velleman, 1985)
 - **MANET** (Unwin et al., 1994)
- The basic building blocks of Mondrian are
 - uni- and multivariate plots for variables measured on various scales (including geographical maps)
 - selection, and
 - linked highlighting
 - fast parameter changes
 - link to R to add statistical procedures of various kinds
- Mondrian can be used free of charge, is open source and runs equally well on Windows, MacOS and Linux computers

Sample of 572 Italian Olive Oils

- The definition of olive oil quality (extra virgin, virgin) is expressed as threshold on acidity measured as the proportion of "oleic" fatty acid
- Composition of fatty acids in olive oils can be measured with the aim of identifying the origin of the olive oil
- Here measurements were taken in 1983 from Italian olive oils originating from 9 different regions aggregated to 3 areas

Summary

Martin Theus

- Graphical methods are quite effective when it comes to explore the structure of a dataset
- Interactions with the graphs are crucial to aid a fast and successful exploration of the data
- High-dimensional plots are already quite powerful and linking increases the dimensionality even further
- Without interaction, those high-dimensional plots are far less useful
- After an initial graphical cleaning and exploration of a dataset, we usually end up with much simpler models and avoid modeling artifacts or errors

You may certainly trust your models, but only once you understood your data

Why Mondrian?

• Mondrian (Theus, 2010)

Piet Mondriaan

